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Abstract

A volume averaging theory (VAT) established in the field of fluid-saturated porous media has been successfully exploited to derive a
general set of bioheat transfer equations for blood flows and its surrounding biological tissue. A closed set of macroscopic governing
equations for both velocity and temperature fields in intra- and extravascular phases has been established, for the first time, using the
theory of anisotropic porous media. Firstly, two individual macroscopic energy equations are derived for the blood flow and its sur-
rounding tissue under the thermal non-equilibrium condition. The blood perfusion term is identified and modeled in consideration of
the transvascular flow in the extravascular region, while the dispersion and interfacial heat transfer terms are modeled according to con-
ventional porous media treatments. It is shown that the resulting two-energy equation model reduces to Pennes model, Wulff model and
their modifications, under appropriate conditions. Subsequently, the two-energy equation model has been extended to the three-energy
equation version, in order to account for the countercurrent heat transfer between closely spaced arteries and veins in the circulatory
system and its effect on the peripheral heat transfer. This general form of three-energy equation model naturally reduces to the energy
equations for the tissue, proposed by Chato, Keller and Seiler. Controversial issues on blood perfusion, dispersion and interfacial heat
transfer coefficient are discussed in a rigorous mathematical manner.
� 2007 Published by Elsevier Ltd.
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1. Introduction

A number of bioheat transfer equations for living tissue
have been proposed since the landmark paper by Pennes [1]
appeared in 1948, in which the perfusion heat source was
introduced. Although Pennes model is often adequate for
roughly describing the effect of blood flow on the tissue
temperature, some serious shortcomings exist in his model
due to its inherent simplicity, as pointed out by Wulff [2],
namely, assuming uniform perfusion rate without account-
ing for blood flow direction, neglecting the important ana-
tomical features of the circulatory network system such as
countercurrent arrangement of the system, and choosing
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only the venous blood stream as the fluid stream equili-
brated with the tissue.

In order to overcome these shortcomings, a considerable
number of modifications have been proposed by various
researchers. Wulff [2] and Klinger [3] considered the local
blood mass flux to account the blood flow direction, while
Chen and Holmes [4] examined the effect of thermal equil-
ibration length on the blood temperature and added the
dispersion and microcirculatory perfusion terms to the
Klinger equation.

All foregoing papers concerned mainly with the cases of
isolated vessels and the surrounding tissue. The effect of
countercurrent heat transfer between closely spaced arter-
ies and veins in the tissue must be taken into full consider-
ation when the anatomical configuration of the main
supply artery and vein in the limbs is treated. Following
the experimental study conducted by Bazett and his col-
leagues [5,6], Scholander and Krog [7] and Mitchell and
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Nomenclature

A surface area
Aint interface between the fluid and solid
af specific surface area
bij Forchheimer tensor
cp specific heat at constant pressure
hf interfacial heat transfer coefficient
k thermal conductivity
Kij permeability tensor
nj unit vector pointing outward from the fluid side

to solid side
p pressure
Sm metabolic reaction rate
T temperature
ui velocity vector
V representative elementary volume
x, y Cartesian coordinates
a thermal diffusivity

e porosity
m kinematic viscosity
q density
x perfusion rate
x0 net filtration rate

Special symbols
~/ deviation from intrinsic average
h/i volume average
h/if,s,a,v intrinsic average

Subscripts and superscripts

a artery
dis dispersion
f fluid
s solid
v vein
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Myers [8] investigated such an effect and successfully dem-
onstrated that the countercurrent heat exchange reduces
heat loss from the extremity to the surroundings, which
could be quite significant due to a large surface to volume
ratio. Keller and Seiler [9] established a bioheat transfer
model equation to include the countercurrent heat transfer,
using a one-dimensional configuration for the subcutane-
ous tissue region with arteries, veins and capillaries. Wein-
baum and Jiji [10] proposed a new model, which is based
on some anatomical understanding, considering the coun-
tercurrent arterio–venous vessels. As pointed out by Roet-
zel and Xuan [11], the model may be useful in describing a
temperature field in a single organ, but would not be con-
venient to apply to the whole thermoregulation system.
Excellent reviews on these bioheat transfer equations may
be found in Chato [12] and Charny [13].

Khaled and Vafai [14] and Khanafer and Vafai [15]
stress that the theory of porous media is most appropriate
for treating heat transfer in biological tissues since it con-
tains fewer assumptions as compared to different bioheat
transfer equations. Roetzel and Xuan [11] and Xuan and
Roetzel [16] exploited the volume averaging theory
(VAT) previously established for the study of porous media
(e.g. Cheng [17], Nakayama [18]), to formulate a two-
energy equation model accounting for the thermal non-
equilibrium between the blood and peripheral tissue. In
their model, the perfusion term is replaced by the interfa-
cial convective heat transfer term. This point should be
examined since the interfacial convective heat transfer is
different from perfusion heat transfer. Naturally, the for-
mer takes place even in the absence of the latter.

In this study, we present a rigorous mathematical devel-
opment based on the volume averaging theory, so as to
achieve a complete set of the volume averaged governing
equations for bioheat transfer and blood flow. Most short-
comings in existing models will be overcome. We start with
the case of isolated blood vessels and the surrounding tis-
sue, to establish a two-energy equation model for the blood
and tissue temperatures. We shall identify the terms
describing the blood perfusion and dispersion in the result-
ing equation and revisit Pennes model, Wulff model and
their modifications.

Subsequently, the two-energy equation model is
extended to the three-energy equation model, so as to
account for the effect of countercurrent heat transfer
between closely spaced arteries and veins in the blood cir-
culatory system. In this model, three individual tempera-
tures are assigned for the arteries, veins and tissue. We
shall examine the Keller and Seiler model [9] and Chato
model [12] for the microcirculation as well as the model
proposed by Xuan and Roetzel [16] for simulation of tran-
sient response of the human limb to an external stimulus.
Controversial issues on blood perfusion, dispersion and
heat transfer coefficient will be discussed in a rigorous
mathematical manner.
2. Volume averaging procedure

In an anatomical view, three compartments are identi-
fied in the biological tissues, namely, blood vessels, cells
and interstitium, as illustrated in Fig. 1. The interstitial
space can be further divided into the extracellular matrix
and the interstitial fluid. However, for sake of simplicity,
we divide the biological tissue into two distinctive regions,
namely, the vascular region and the extravascular region
(i.e. cells and the interstitium) and treat the whole anatom-
ical structure as a fluid-saturated porous medium, through
which the blood infiltrates. The extravascular region is
regarded as a solid matrix (although the extravascular fluid
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Fig. 1. Schematic view of biological tissue.
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is present), and will be simply referred to the ‘‘tissue”

region to differentiate it from the ‘‘blood” region.
Thus, we shall try to apply the principle of heat and fluid

flow in a fluid-saturated porous medium to derive a set of
the volume averaged governing equations for the bioheat
transfer and blood flow. In order for the volume averaging
(smoothing process) to be meaningful, we consider a con-
trol volume V in a fluid-saturated porous medium, as
shown in Fig. 2, whose length scale V1/3 is much smaller
than the macroscopic characteristic length V 1=3

c , but, at
the same time, much greater than the microscopic (anatom-
ical structure) characteristic length (see e.g. Nakayama
[18]). Under this condition, the volume average of a certain
variable / is defined as

h/i � 1

V

Z
V f

/dV : ð1Þ

Another average, namely, intrinsic average, is given by

h/if � 1

V f

Z
V f

/dV ; ð2Þ
V

Vc

Fig. 2. Control volume in a porous medium.
where Vf is the volume space which the fluid (blood) occu-
pies. Obviously, two averages are related as

h/i ¼ eh/if ; ð3Þ
where e � Vf/V is the local porosity, namely, the volume
fraction of the vascular space, which is generally less than
0.1. Following Cheng [17], Nakayama [18], Quintard and
Whitaker [19] and many others, we decompose a variable
into its intrinsic average and the spatial deviation from it:

/ ¼ h/if þ ~/: ð4Þ
We shall exploit the following spatial average relationships:

h/1/2i
f ¼ h/1i

fh/2i
f þ h~/1

~/2if ; ð5Þ
o/
oxi

� �
¼ oh/i

oxi
þ 1

V

Z
Aint

/nidA or

o/
oxi

� �f

¼ 1

e
oeh/if

oxi
þ 1

V f

Z
Aint

/nidA; ð6a; bÞ

and

o/
ot

� �
¼ oh/i

ot
; ð7Þ

where Aint is the local interface between the blood and solid
matrix, while ni is the unit vector pointing outward from
the fluid side to solid side. The similarity between the vol-
ume averaging and the Reynolds averaging used in the
study of turbulence is quite obvious. However, it should
be noted that the present volume averaging procedure is
somewhat more complex than the Reynolds averaging pro-
cedure, since it involves with surface integrals, as clearly
seen from (6).

We subdivide the anatomic structure into the blood
phase (fluid phase) and the tissue and other solid tissue
phase (solid matrix phase), in which metabolic reactions
may take place. We shall consider the microscopic govern-
ing equations, namely, the continuity equation, Navier–
Stokes equation and energy equation for the blood phase
and the heat conduction equation for the solid matrix
phase.

For the blood phase:

ouj

oxj
¼ 0; ð8Þ

oui

ot
þ o

oxj
ujui ¼ �

1

q
op
oxi
þ o

oxj
mf

oui

oxj
þ ouj

oxi

� �
; ð9Þ

qfcpf

oT
ot
þ o

oxj
ujT

� �
¼ o

oxj
kf

oT
oxj

� �
: ð10Þ

For the solid matrix phase:

qscs

oT
ot
¼ o

oxj
ks

oT
oxj

� �
þ Sm; ð11Þ

where the subscripts f and s stand for the fluid and solid,
respectively. It is assumed that the fluid (blood) is incom-
pressible and Newtonian, and all properties are constant.
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3. Volume averaged continuity and momentum equations for

blood flow

Let us integrate the continuity Eq. (8) over a local con-
trol volume using the formula (6b) as

oehujif

oxj
þ 1

V

Z
Aint

ujnjdA ¼ 0; ð12Þ

where Aint is the local interface between the blood and solid
matrix within the control volume V, while nj is the unit vec-
tor pointing outward from the fluid side to solid side. For
sake of simplicity, the porosity e is assumed to vary moder-
ately within a porous medium.

The second term describes the volume rate of the fluid
bleeding off to the solid matrix through the interfacial vas-
cular wall, as illustrated in Fig. 3. In most microcirculatory
systems of the body, there is a net filtration of fluid from
the intravascular to the extravascular compartment, such
that capillary fluid filtration exceeds reabsorption. How-
ever, this would not cause fluid to accumulate within the
interstitium since the lymphatic system removes excess fluid
from the interstitium and returns it back to the intravascu-
lar compartment, as indicated in the figure. Thus, the sec-
ond term describing the net filtration is negligibly small,
such that Eq. (12) reduces to

ohuji
oxj
¼ 0: ð13Þ

Accordingly, the Navier–Stokes equation (9) may be inte-
grated to give

ohuiif

ot
þ o

oxj
hujifhuiif ¼ �

1

qf

ohpif

oxi
þ o

oxj
mf

ohuii
oxj
þ ohuji

oxi

� �

þ 1

V f

Z
Aint

� p
q
þ mf

oui

oxj
þ ouj

oxi

� �� �
njdA

� o

oxj
h~uj~uiif :

ð14Þ

In order to close the foregoing macroscopic momentum
Eq. (14), the terms associated with the surface integral
are modeled according to Vafai and Tien [20] as
f

pf Tc
f

ωρ

s

pf Tc
f

ωρ

Fig. 3. Capillary blood flow and extravascular flow.
1

V f

Z
Aint

� p
qf

þ mf

oui

oxj
þ ouj

oxi

� �� �
njdA� o

oxj
h~uj~uiif

¼ � mf

K
ehuiif � be2ðhukifhukifÞ1=2huiif ð15Þ

such that

ohuiif

ot
þ o

oxj
hujifhuiif ¼�

1

q
ohpif

oxi
þ o

oxj
mf

ohuiif

oxj
þ ohujif

oxi

 !

� mf

Kij
ehujif � bije

2 hukifhukif
� �1=2

hujif ;

ð16Þ

where Kij and bij are the permeability and Forchheimer ten-
sors, respectively. These tensors, which depend on the ana-
tomical structure, can be determined following the
procedure established for anisotropic porous structure
(Nakayama et al. [21]), as sufficient information on the
anatomical structure and properties is provided For the
vessels of sufficiently small diameter, the foregoing equa-
tion reduces to Darcy’s law:

� 1

q
ohpif

oxi
� mf

Kij
huji ¼ 0; ð17Þ

where huji = ehujif is the Darcian velocity (i.e. apparent
velocity). We may use the Darcy law for most tissue regions
except for the regions where large arteries or veins are
located.

4. Two-energy equation model for blood flow and tissue

Before actually integrating the energy Eq. (10), it may be
quite instructive to focus our attention on the volume aver-
age of the convection term. Using the Eqs. (5) and (6), it is
straightforward to show

e
o

oxj
qfcpfujT

� �f

¼ o

oxj
qfcpfhujihT if þ

o

oxj
eqfcpfh~uj

~T if

þ 1

V

Z
Aint

qfcpf ujT
� 	

njdA; ð18Þ

where the first term on the right hand-side describes the
macroscopic convection, while the second term on the
right hand-side takes account of the thermal dispersion
(Nakayama et al. [22]). It is the last term on the right
hand-side that corresponds to the blood ‘‘perfusion” heat
source. Thus, the blood perfusion heat source term is iden-
tified as an extra surface integral term resulting from
changing the sequence of integration and derivation, as
we obtain the macroscopic energy equation by integrating
the microscopic convection term over a local control
volume.

Having expanded the integrated convection term, we
may readily transform both the energy Eq. (10) for the
blood flow and the conduction Eq. (11) for the solid matrix
into the corresponding volume averaged equations as
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For the blood phase:

eqfcpf

ohT if

ot
þ qf cpf

o

oxj
hujihT if

¼ o

oxj
ekf

ohT if

oxj
þ kf

V

Z
Aint

TnjdA� eqf cpfh~uj
~T if

 !

þ 1

V

Z
Aint

kf
oT
oxj

njdA� 1

V

Z
Aint

qf cpf ujT
� 	

njdA: ð19Þ

For the solid matrix phase:

ð1� eÞqscs
ohT is

ot
¼ o

oxj
1� eð Þks

ohT is

oxj
� ks

V

Z
Aint

TnjdA
� �

� 1

V

Z
Aint

kf

oT
oxj

njdA

þ 1

V

Z
Aint

qfcpfujT
� 	

njdAþ ð1� eÞSm;

ð20Þ

where hTis is the intrinsic average of the solid matrix tem-
perature. Note that the dispersion heat flux qfcpfh~uj

~T i ¼
eqfcpfh~uj

~T if appears in the volume averaged energy Eq.
(19) for the blood phase, which may well be modeled under
the gradient diffusion hypothesis:

�eqfcpfh~uj
~T if ¼ ekdiskj

ohT if

oxk
ð21Þ

A number of expressions have been proposed for the ther-
mal dispersion thermal conductivity kdiskj . Nakayama et al.
[22] obtained a transport equation for the dispersion heat
flux vector, which naturally reduces to the foregoing gradi-
ent diffusion form. For a bundle of vessels of radius R, they
obtained the following expression for the predominant ax-
ial component of kdiskj :

kdisxx ¼
1

48

qfcpfhui
f R

kf

 !2

kf :
qfcpfhui

fR
kf

< 1

ðcapillary blood vesselsÞ; ð22aÞ

kdisxx ¼ 2:55
qfcpfhuifR

kf

 !7=8

Pr1=8kf :
qfcpfhui

f R
kf

> 1

ðlarge arteries and veinsÞ: ð22bÞ

In order to close the foregoing macroscopic energy Eqs.
(19) and (20), the terms associated with the surface integral,
describing the interfacial heat transfer and perfusion
between the fluid and solid, must be modeled. For the
interfacial heat transfer, Newton’s cooling law may be
adopted as

1

V

Z
Aint

kf

oT
oxj

njdA ¼ afhfðhT is � hT ifÞ; ð23Þ

where af and hf are the specific surface area and interfacial
heat transfer coefficient, respectively. For the bundle of
vascular tubes of radius R, we have af = 2e/R and
hf = Nu(kf/2R), such that afhf = Nu(ekf/R
2), where Nu is

the Nusselt number based on the local diameter of the vas-
cular tube. If, the local porosity e and specific surface area
af are provided for the complex tissue–vascular structure,
we may estimate the interfacial heat transfer coefficient
using hf = Nu(kfaf/4e). Roetzel and Xuan [11] set Nu =
4.93 for both arterial and venous blood vessels. We may
appeal to a numerical experiment proposed by Nakayama
et al. [23] for complex porous structures.

As for modeling the blood perfusion term, we may refer
back to Fig. 3, and note that the transcapillary fluid
exchange takes place between the blood and the surround-
ing tissue. However, the fluid lost from the vascular space
will be compensated by the flow of extravascular fluids
and lymph from the tissue to vascular space. It is quite rea-
sonable to assume that extravascular fluids and all lymph
in the tissue space have the same temperature as the tissue
itself. Thus, we assume that the transcapillary fluid
exchange takes place at the rate of x (m3/sm3) and model
the blood perfusion term as

1

V

Z
Aint

qfcpfujT
� 	

njdA ¼ qfcpfxðhT i
f � hT isÞ: ð24Þ

Note that the perfusion rate x, unlike that of Pennes, varies
locally and we assume that its local value is provided every-
where. Pennes found that his model fits the experimental
data for x = 2 � 10�4–5 � 10�4 (m3/sm3).

Furthermore, the surface integral terms kf

V

R
Aint

TnjdA and
� ks

V

R
Aint

TnjdA present the tortuosity heat fluxes, which are
usually small, as convection dominates over conduction
(see e.g. Nakayama et al. [24]). Therefore, their effects
may well be absorbed in effective thermal conductivities,
as done by Xuan and Roetzel [16]. Having modeled the
terms associated with dispersion, interfacial heat transfer,
blood perfusion and tortuosity, the individual macroscopic
energy equations may finally be written for the blood and
tissue phases as

For the blood phase:

eqfcpf

ohT if

ot
þ qfcpf

o

oxj
hujihT if

¼ o

oxj
ekf

ohT if

oxj
þ ekdisjk

ohT if

oxk

 !

� af hfðhT if � hT isÞ � qfcpfxðhT i
f � hT isÞ ð25Þ

in which the left hand-side term denotes the macroscopic
convection term, while the four terms on the right hand-
side correspond to the macroscopic conduction, thermal
dispersion, interfacial convective heat transfer and blood
perfusion, respectively.

For the solid tissue phase:

ð1� eÞqscs

ohT is

ot
¼ o

oxj
ð1� eÞks

ohT is

oxj

� �
þ afhfðhT if � hT isÞ

þ qf cpfxðhT i
f � hT isÞ þ ð1� eÞSm ð26Þ
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in which the left hand-side term denotes the thermal inertia
term, while the four terms on the right hand-side corre-
spond to the macroscopic conduction, interfacial convec-
tive heat transfer, blood perfusion heat source and
metabolic heat source, respectively.

The resulting Eqs. (25) and (26) appear to be a correct
form for the case of thermal non-equilibrium, and are
expected to clear up possible confusions associated with
the blood perfusion term. The continuity Eq. (13), Darcy’s
law (17) and the two-energy equations (25) and (26) form a
closed set of the macroscopic governing equations. The
present model in a multi-dimensional and anisotropic form
is quite general and can be applied to find both velocity and
temperature fields, as we prescribe the spatial distributions
of permeability tensor, porosity, interfacial heat transfer
coefficient, metabolic reaction rate and perfusion rate. It
is interesting to note that, when the velocity field, porosity
and metabolic reaction are prescribed, we only need to
know the local value of the lumped convection–perfusion
parameter, namely, ðafhf þ qf cpfxÞ (in addition to appropri-
ate thermal boundary conditions) to solve the two-energy
Eqs. (25) and (26) for the blood and tissue temperatures,
hTif and hTis.
5. Comparison of present and existing bioheat transfer

models

It should be noted that most existing bioheat transfer
models already reside in the present model based on the
theory of porous media. We shall revisit some of the exist-
ing models and try to generate them from the present gen-
eral model.
5.1. Pennes model

Pennes model [1] in our notation runs as

ð1� eÞqscs

ohT is

ot
¼ o

oxj
ð1� eÞks

ohT is

oxj

� �
þ qfcpfxPennesðT a0 � hT isÞ þ ð1� eÞSm;

ð27Þ

where xPennes is the mean blood perfusion rate, while Ta0 is
the mean brachial artery temperature. We compare the
Pennes model against the energy Eq. (26) for the solid tis-
sue phase and find the following relationship:

qf cpfxPennesðT a0 � hT isÞ
¼ afhfðhT if � hT isÞ þ qfcpfxðhT i

f � hT isÞ ð28Þ

Perhaps, Pennes considered that the blood perfusion is the
predominant heat source for the tissue, and did not bother
to describe the interfacial convective heat transfer between
the blood and tissue via the vascular wall. Instead, he intro-
duced Ta0 to adjust the total heat transfer, which takes
place as the blood enters and leaves the tissue. We may as-
sume Ta0 ’ hTif for small vessels, and find
xPennes ’ xþ af hf

qfcpf

: ð29Þ

Thus, Pennes’ perfusion rate may be regarded as an effec-
tive one that includes interfacial convective heat transfer
as well. Pennes assumes that blood enters the smallest
vessels of the microcirculation at Ta0, where all heat trans-
fer between the blood and tissue takes place. The assump-
tion of the complete thermal equilibration with the
surrounding tissue is valid only when Peclet number is suf-
ficiently small.
5.2. Wulff model and Klinger model

Wulff [2] criticized the Pennes model, pointing out that
the moving blood through a tissue convects heat in any
direction, not just in the direction of the local tissue tem-
perature gradient. He assumed that the blood temperature
hTif is equivalent to the tissue temperature within a tissue
control volume and proposed a new bioheat transfer equa-
tion. The equation later generalized by Klinger [3] runs in
our notation as

ð1� eÞqscs

ohT is

ot

¼ o

oxj
ð1� eÞks

ohT is

oxj

� �
� qfcpf

ohujihT is

oxj
þ ð1� eÞSm:

ð30Þ

We can obtain a similar equation by combining Eqs. (25)
and (26) setting hTif = hTis as follows:

ðeqfcpf þ ð1� eÞqscsÞ
ohT is

ot
þ qfcpf

o

oxj
hujihT is

¼ o

oxj
ekf þ ð1� eÞksð ÞohT i

s

oxj
þ ekdisjk

ohT is

oxk

� �
þ ð1� eÞSm:

ð31Þ

We can easily see that the foregoing equation reduces to the
Klinger equation when the ratio of vascular volume to total
volume (i.e. porosity e) is sufficiently small. Since the poros-
ity is generally less than 0.1, the foregoing two equations
are quite close to each other.

Another interpretation on the directional effect on the
tissue temperature field is possible. When the blood flow
is strong enough to neglect the macroscopic diffusion, the
energy Eq. (25) for the blood flow reduces to

qfcpf

o

oxj
hujihT if ¼�af hfðhT if � hT isÞ � qfcpfxðhT i

f � hT isÞ

ð32Þ

Substitution of the foregoing equation into the energy
equation for the tissue (26) yields the Klinger Eq. (30).
The assumption implicit here is that the blood flow
velocity is sufficiently high that the ratio of the bulk con-
vection heat transfer to conduction heat transfer, namely,
the Peclet number, is much greater than unity. Thus, the
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Klinger model applies to the tissue with comparatively
large vessels.
Arterial vessel

Venous vessel

Deep tissue layer

Cutaneous layer

Fig. 4. Schematic view of countercurrent heat exchange near the skin
surface.
5.3. Cheng and Holmes model

Cheng and Holmes [4] assumed that all tissue-arterial
blood heat exchange occurs along the circulatory network
after the blood flows through the terminal arteries and
before it reaches the level of the arterioles, which
prompted them to propose the following bioheat transfer
model:

qc
oT t

ot
þ qfcpf

o

oxj
hujiT t

¼ o

oxj
ðekf þ ð1� eÞksÞ

oT t

oxj
þ kp

oT t

oxj

� �

þ qf cpfx
�
j ðT �a � T tÞ þ ð1� eÞSm; ð33Þ

where

q ¼ eqf þ ð1� eÞqs; ð34aÞ

c ¼ ðeqfcpf þ ð1� eÞqscsÞ=q ð34bÞ

and

T t ¼ ðeqfcpfhT i
f þ ð1� eÞqscshT isÞ=qc ð34cÞ

is the temperature of the continuum based on a volume
average. Moreover, x�j is the perfusion bleed-off to the tis-
sue only from the micro-vessels past the jth generation of
branching, while T �a is the blood temperature at the jth gen-
eration of branching. Both x�j and T �a require the anatom-
ical data. Chen and Holmes also take account of the
‘‘eddy” conduction due to the random flow of blood, by
introducing the thermal conductivity kp, which corre-
sponds to our dispersion thermal conductivity kdis. The en-
ergy equation similar to their Eq. (33) may be obtained by
combining the two-energy equations (25) and (26) in the
present model as

qc
oT t

ot
þqf cpf

o

oxj
hujihT if

¼ o

oxj
ekf

ohT if

oxj
þð1� eÞks

ohT is

oxj
þ ekdisjk

ohT if

oxk

 !
þð1� eÞSm

ð35Þ

When the three temperature gradients on the right hand-
side are close and ekdisjk ¼ kpdjk, the foregoing equation re-
duces to

qc
oT t

ot
þ qfcpf

o

oxj
hujihT if

¼ o

oxj
ðekf þ ð1� eÞksÞ

oT t

oxj
þ kp

oT t

oxj

� �
þ ð1� eÞSm

ð36Þ
which is close to the equation of Chen and Holmes, except
that qfcpfx

�
j ðT �a � T tÞ is missing, as in the models of Wulff

and Klinger, since it should vanish, as we add Eqs. (25) and
(26).
6. A general three-energy equation model for countercurrent
bioheat transfer

Bazett and his colleagues [6] found that the axial temper-
ature gradient in the limb artery of human, under condi-
tions of very low ambient temperature, is an order of
magnitude higher than under normal ambient conditions.
Their experimental finding brought attention to the role
of countercurrent heat exchange in bioheat transfer. A
schematic view of the tissue layer close to the skin surface
is shown in Fig. 4, in which the arteries and veins are
paired, such that the countercurrent heat transfer takes
place. Mitchell and Myers [8] mathematically modeled this
important role in a more general manner than that pre-
sented by Scholander and Krog [7] and demonstrated that
the countercurrent heat exchange reduces heat loss from
the extremity to the surroundings. However, their one-
dimensional model was not able to take account of either
metabolic reaction or perfusion bleed-off from the artery
to vein. The foregoing survey prompts us to establish a
multi-dimensional model, which can be applied to the
regions of extremity, where the countercurrent heat trans-
fer between closely spaced arteries and veins in the blood
circulatory system plays an important role in the peripheral
heat transfer from the extremity to the surroundings.
Thus, we assign individual temperatures hTiahTiv and hTis
to the arterial blood, venous blood and tissue, respectively,
to propose a general three-energy equation model as
follows:

For the arterial blood phase:

eaqfcpf

ohT ia

ot
þ qfcpf

o

oxj
eahujiahT ia

¼ o

oxj
eaka

ohT ia

oxj
þ eakdisajk

ohT ia

oxk

� �
� aahaðhT ia � hT isÞ

� qfcpfx
0
ahT i

a
: ð37aÞ
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Fig. 5. One-dimensional model for countercurrent heat exchange.
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For the venous blood phase:

evqfcpf

ohT iv

ot
þ qfcpf

o

oxj
evhujivhT iv

¼ o

oxj
evkv

ohT iv

oxj
þ evkdisvjk

ohT iv

oxk

� �
� avhvðhT iv � hT isÞ

� qf cpfx
0
vhT i

v
: ð37bÞ

For the solid tissue phase:

ð1� eÞqscs

ohT is

ot
¼ o

oxj
ð1� eÞks

ohT is

oxj

� �
þ aahaðhT ia� hT isÞ

þ qfcpfx
0
ahT i

aþ avhvðhT iv� hT isÞ
þ qfcpfx

0
vhT i

vþ ð1� eÞSm; ð38Þ

where

e ¼ ea þ ev ð39Þ
Since the arterial–venous anastomoses provide direct paths
from terminal arteries to veins, the net volume filtration
rates of the arterial and venous vessels, x0a and x0v, are
no longer negligible for the peripheral heat transfer of
this kind, such that

R
Aint

qf cpf ujT
� 	

njdA=V ¼ qfcpfx
0hT if .

Accordingly, the velocity fields should be determined
from

oeahujif

oxj
þ x0a ¼ 0 and � 1

q
ohpia

oxi
� m

Kaij

eahujia ¼ 0

ð40a; bÞ
oevhujiv

oxj
þ x0v ¼ 0 and � 1

q
ohpiv

oxi
� m

Kvij

evhujiv ¼ 0;

ð41a; bÞ
where ea and ev are the volume fractions of the arterial
blood and that of the venous blood, respectively. For the
microcirculation of peripheral tissue in which capillaries
provide a continuous connection between the terminal ar-
tery and vein (i.e. arterial–venous anastomoses), we may
readily set

x0a ¼ �x0v ð42Þ
such that the present energy equation for the solid tissue
phase reduces to

ð1� eÞqscs

ohT is

ot
¼ o

oxj
ð1� eÞks

ohT is

oxj

� �
þ aahaðhT ia� hT isÞ

þ avhvðhT iv� hT isÞ
þ qfcpfx

0
aðhT i

a� hT ivÞ þ ð1� eÞSm:

ð43Þ
6.1. Keller and Seiler model

Keller and Seiler [9] noted that the axial temperature
gradient in the limb is much higher than the transverse
one and considered an energy balance within a control vol-
ume for the idealized one-dimensional steady case, as illus-
trated in Fig. 5, for which they proposed
ð1� eÞks

d2hT is

dx2
þ aahaðhT ia � hT isÞ þ avhvðhT iv � hT isÞ

þ qf cpfx
0ðhT ia � hT isÞ þ ð1� eÞSm ¼ 0 ð44Þ

which is almost identical to what we would get for the one-
dimensional case from our multi-dimensional expression
(43), except that the temperature difference in the perfusion
term somewhat differs from ours. Keller and Seiler ob-
tained solutions assuming that the arterial blood enters
the peripheral region at the isothermal core temperature
and that the venous blood is completely equilibrated with
the tissue at the cutaneous layer.

6.2. Chato model

Chato’s countercurrent heat transfer model [12] differs
from Keller and Seiler [9] in its neglect of heat transfer
between the blood and tissue. In this way, he was able to
concentrate on the two temperatures instead of three as
in Keller and Seiler. Chato’s one-dimensional model can
easily be generated from our general expressions (37a)
and (37b) along with (40a) and (41a), dropping the thermal
inertia and conduction terms as

qfcpf

d

dx
eahuiahT ia ¼ �aahaðhT ia � hT ivÞ � qf cpfx

0
ahT i

a
;

ð45aÞ

qfcpf

d

dx
evhuivhT iv ¼ �avhvðhT iv � hT iaÞ þ qf cpfx

0
ahT i

a
;

ð45bÞ

where

eahuia ¼ u0 � x0ax and eahuia ¼ �u0 þ x0ax: ð46a; bÞ
Note that u0 is the apparent velocity at x = 0 and that the
right hand-side terms in the two Eqs. (45a) and (45b) can-
cels out each other, as they should for this ‘‘perfect” heat
exchange system. Chato obtained arterial and venous tem-
perature profiles along the length of the vessels and demon-
strated that the effect of perfusion bleed-off is to increase
the heat transfer between the vessels as compared with
the case of constant mass flow rate.
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6.3. Roetzel and Xuan model

Roetzel and Xuan [11] used the theory of porous media
to simulate a transient response of the limb to external
stimulus, in which the effect of the countercurrent heat
exchange on the temperature response is expected to be sig-
nificant. Their energy equation for the tissue in our nota-
tion runs as

ð1� eÞqscs

ohT is

ot
¼ o

oxj
ð1� eÞks

ohT is

oxj

� �
þ aahaðhT ia� hT isÞ

þ avhvðhT iv� hT isÞ þ ð1� eÞSm: ð47Þ

Comparison of the foregoing equation against our expres-
sion (43) for the tissue reveals that the perfusion term
qfcpfx

0
aðhT i

a � hT ivÞ is missing. Obviously, they did
not retain the term describing the transcapillary fluid
exchange via arterial–venous anastomoses, namely,R

Aint
qf cpfujT
� 	

njdA=V ¼ qfcpfx
0hT if . If they did, they

would have obtained our expression (43), which may be
rearranged in their form as

ð1� eÞqscs

ohT is

ot

¼ o

oxj
ð1� eÞks

ohT is

oxj

� �
þ ðaaha þ qfcpfx

0
aÞðhT i

a � hT isÞ

þ ðavhv � qf cpfx
0
aÞðhT i

v � hT isÞ þ ð1� eÞSm: ð48Þ

In their model, the convection–perfusion parameters,
namely, ðafhf � qf cpfx

0Þ, are replaced by the interfacial
convective heat transfer coefficients, afhf. This difference
should not be overlooked since the perfusion heat sources
could be quite significant for the bioheat transfer in the
extremities, as Chato [12] demonstrated using his model.

6.4. Concluding remarks

A rigorous mathematical development based on the vol-
ume averaging theory has been presented to give a correct
set of bioheat transfer equations for the blood flow and its
surrounding biological tissue. The blood perfusion heat
source term is identified as an extra surface integral term
resulting from changing the sequence of integration and
derivation, as we obtain the macroscopic energy equation
by integrating the microscopic convection term within a
local control volume. Using this general bioheat transfer
model, we have revisited existing bioheat transfer models,
such as Pennes, Wulff, Klinger, Cheng and Holmes, so as
to point out possible shortcomings in the models.

The two-energy equation model has been further
extended to the three-energy equation model, to investigate
the countercurrent heat exchange between the arterial and
venous blood vessels in the circulatory system. Keller and
Seiler model and Chato model may easily be generated,
writing the present model for the idealized one-dimensional
case. The present three-energy equation model in a multi-
dimensional and anisotropic form is found to be quite
general and can be applied to all regions peripheral heat
transfer from the extremity to the surroundings. The
three-energy equations coupled with the continuity and
Darcy’s laws may be solved to find both velocity and tem-
perature fields, as we prescribe the spatial distributions of
permeabilities, volume fractions, interfacial heat transfer
coefficients and perfusion rates.

As pointed out by Roetzel and Xuan [11], some physio-
logical parameters such as porosity and specific surface
area depend on such factors as the body temperature and
interaction with the environment, as well as vasoconstric-
tor and vasodilator mechanisms. These physiological
parameters and model constants, which should be deter-
mined experimentally, are urgently in need. Shortage of
these experimental data, however, should not hinder us
from applying the present bioheat transfer model to certain
cases using some estimated values. It is believed that even
the applications with the estimated values do not affect
explanation of the applicability of the present bioheat
transfer model. Such attempts are underway.
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